Tech Field Day

The Independent IT Influencer Event

  • Home »
    • The Futurum Group
    • FAQ
    • Staff
  • Sponsors »
    • Sponsor List »
      • 2025 Sponsors
      • 2024 Sponsors
      • 2023 Sponsors
      • 2022 Sponsors
    • Sponsor Tech Field Day
    • Best of Tech Field Day
    • Results and Metrics
    • Preparing Your Presentation »
      • Complete Presentation Guide
      • A Classic Tech Field Day Agenda
      • Field Day Room Setup
      • Presenting to Engineers
  • Delegates »
    • Delegate List »
      • 2025 Delegates
      • 2024 Delegates
      • 2023 Delegates
      • 2022 Delegates
      • 2021 Delegates
      • 2020 Delegates
      • 2019 Delegates
      • 2018 Delegates
    • Become a Field Day Delegate
    • What Delegates Should Know
  • Events »
    • All Events »
      • Upcoming
      • Past
    • Field Day
    • Field Day Extra
    • Field Day Exclusive
    • Field Day Experience
    • Field Day Live
    • Field Day Showcase
  • Topics »
    • Tech Field Day
    • Cloud Field Day
    • Mobility Field Day
    • Networking Field Day
    • Security Field Day
    • Storage Field Day
  • News »
    • Coverage
    • Event News
    • Podcast
  • When autocomplete results are available use up and down arrows to review and enter to go to the desired page. Touch device users, explore by touch or with swipe gestures.
You are here: Home / Videos / Google Cloud Storage for AI ML Workloads

Google Cloud Storage for AI ML Workloads



AI Data Infrastructure Field Day 1


This video is part of the appearance, “Google Cloud Presents at AI Data Infrastructure Field Day 1“. It was recorded as part of AI Data Infrastructure Field Day 1 at 10:30-12:00 on October 2, 2024.


Watch on YouTube
Watch on Vimeo

In his presentation on Google Cloud Storage for AI ML workloads, Dave Stiver, Group Product Manager at Google Cloud, discussed the critical role of cloud storage in the AI data pipeline, particularly focusing on training, checkpoints, and inference. He emphasized the importance of time to serve for machine learning developers, highlighting that while scalability and performance are essential, the ability to interact with object storage through a file interface is crucial for developers who are accustomed to file systems. Stiver introduced two key features, GCS FUSE and Anywhere Cache, which enhance the performance of cloud storage for AI workloads. GCS FUSE allows users to mount cloud storage buckets as local file systems, while Anywhere Cache provides a local zonal cache that significantly boosts data access speeds by caching data close to the accelerators.

Stiver shared a use case involving Woven, the autonomous driving division of Toyota, which transitioned from using Lustre to GCS FUSE for their training jobs. This shift resulted in a 50% reduction in training costs and a 14% decrease in training time, demonstrating the effectiveness of the local cache feature in GCS FUSE. He also explained the functionality of Anywhere Cache, which allows users to cache data in the same zone as their accelerators, providing high bandwidth and efficient data access. The presentation highlighted the importance of understanding the consistency model of the cache and how it interacts with the underlying storage, ensuring that users can effectively manage their data across different regions and zones.

The discussion then shifted to the introduction of Parallel Store, a fully managed parallel file system designed for high-throughput AI workloads. Stiver explained that Parallel Store is built on DAOS technology and targets users who require extremely high performance for their AI training jobs. He emphasized the importance of integrating storage solutions with cloud storage to optimize costs and performance, particularly for organizations that need to manage large datasets across hybrid environments. The presentation concluded with a focus on the evolving landscape of AI workloads and the need for tailored storage solutions that can adapt to the diverse requirements of different applications and user personas within organizations.

Personnel: Dave Stiver


  • Bluesky
  • LinkedIn
  • Mastodon
  • RSS
  • Twitter
  • YouTube

Event Calendar

  • Jun 10-Jun 11 — Tech Field Day Extra at Cisco Live US 2025
  • Jul 9-Jul 10 — Networking Field Day 38
  • Jul 16-Jul 17 — Edge Field Day 4
  • Aug 19-Aug 20 — Tech Field Day Extra at SHARE Cleveland 2025
  • Sep 10-Sep 11 — AI Infrastructure Field Day 3
  • Sep 24-Sep 25 — Security Field Day 14
  • Oct 22-Oct 23 — Cloud Field Day 24
  • Oct 29-Oct 30 — AI Field Day 7

Latest Links

  • Techstrong Gang – May 20, 2025
  • How Nile Is Redefining Campus Networks with Zero Trust
  • Celona Shows How Flexible and Scalable Private Cellular can be!
  • Campus Gateway: The Missing Piece in Large-Scale Enterprise Deployments with Cisco Meraki
  • Powering Qlik Open Lakehouse with Apache Iceberg

Return to top of page

Copyright © 2025 · Genesis Framework · WordPress · Log in

▲