Tech Field Day

The Independent IT Influencer Event

  • Home
    • The Futurum Group
    • FAQ
    • Staff
  • Sponsors
    • Sponsor List
      • 2025 Sponsors
      • 2024 Sponsors
      • 2023 Sponsors
      • 2022 Sponsors
    • Sponsor Tech Field Day
    • Best of Tech Field Day
    • Results and Metrics
    • Preparing Your Presentation
      • Complete Presentation Guide
      • A Classic Tech Field Day Agenda
      • Field Day Room Setup
      • Presenting to Engineers
  • Delegates
    • Delegate List
      • 2025 Delegates
      • 2024 Delegates
      • 2023 Delegates
      • 2022 Delegates
      • 2021 Delegates
      • 2020 Delegates
      • 2019 Delegates
      • 2018 Delegates
    • Become a Field Day Delegate
    • What Delegates Should Know
  • Events
    • All Events
      • Upcoming
      • Past
    • Field Day
    • Field Day Extra
    • Field Day Exclusive
    • Field Day Experience
    • Field Day Live
    • Field Day Showcase
  • Topics
    • Tech Field Day
    • Cloud Field Day
    • Mobility Field Day
    • Networking Field Day
    • Security Field Day
    • Storage Field Day
  • News
    • Coverage
    • Event News
    • Podcast
  • When autocomplete results are available use up and down arrows to review and enter to go to the desired page. Touch device users, explore by touch or with swipe gestures.
You are here: Home / Videos / Intel Analytics Zoo Technical Overview and Case Studies

Intel Analytics Zoo Technical Overview and Case Studies



AI Field Day 1


This video is part of the appearance, “Intel Presents Analytics Zoo at AI Field Day 1“. It was recorded as part of AI Field Day 1 at 14:00-16:00 on November 19, 2020.


Watch on YouTube
Watch on Vimeo

Jason Dai, Senior Principal Engineer, gives a deeper technical overview of Intel’s Analytics Zoo, an open source software platform for big data AI. Analytics Zoo uses distributed TensorFlow/PyTorch on Apache Spark, and Dai discusses how it is used in network quality prediction by SK Telecom. Next he focuses on RayOnSpark to run Ray programs directly on the big data platform, giving the example of Burger King’s fast food recommendation engine which leverages an end-to-end training pipeline with RayOnSpark. Turning to the ML workflow question, Dai discusses how a scalable AutoML allows time series prediction, using the example of Tencent Cloud’s TI-One ML platform. Finally, Dai presents the Zouwu open source time series framework on Analytics Zoo.

Personnel: Jason Dai


  • Bluesky
  • LinkedIn
  • Mastodon
  • RSS
  • Twitter
  • YouTube

Event Calendar

  • May 28-May 29 — Security Field Day 13
  • Jun 4-Jun 5 — Cloud Field Day 23
  • Jun 10-Jun 11 — Tech Field Day Extra at Cisco Live US 2025
  • Jul 9-Jul 10 — Networking Field Day 38
  • Jul 16-Jul 17 — Edge Field Day 4
  • Sep 10-Sep 11 — AI Infrastructure Field Day 3
  • Oct 29-Oct 30 — AI Field Day 7

Latest Links

  • Compliance Does Not Equal Security
  • Meraki Campus Gateway: Cloud-Managed Overlay for Complex Networks
  • Exploring the Future of Cybersecurity at Security Field Day 13
  • 5G Neutral Host: Solving Enterprise Cellular Coverage Gaps
  • Qlik Connect 2025: Answers For Agentic AI

Return to top of page

Copyright © 2025 · Genesis Framework · WordPress · Log in