Tech Field Day

The Independent IT Influencer Event

  • Home
    • The Futurum Group
    • FAQ
    • Staff
  • Sponsors
    • Sponsor List
      • 2026 Sponsors
      • 2025 Sponsors
      • 2024 Sponsors
      • 2023 Sponsors
      • 2022 Sponsors
    • Sponsor Tech Field Day
    • Best of Tech Field Day
    • Results and Metrics
    • Preparing Your Presentation
      • Complete Presentation Guide
      • A Classic Tech Field Day Agenda
      • Field Day Room Setup
      • Presenting to Engineers
  • Delegates
    • Delegate List
      • 2025 Delegates
      • 2024 Delegates
      • 2023 Delegates
      • 2022 Delegates
      • 2021 Delegates
      • 2020 Delegates
      • 2019 Delegates
      • 2018 Delegates
    • Become a Field Day Delegate
    • What Delegates Should Know
  • Events
    • All Events
      • Upcoming
      • Past
    • Field Day
    • Field Day Extra
    • Field Day Exclusive
    • Field Day Experience
    • Field Day Live
    • Field Day Showcase
  • Topics
    • Tech Field Day
    • Cloud Field Day
    • Mobility Field Day
    • Networking Field Day
    • Security Field Day
    • Storage Field Day
  • News
    • Coverage
    • Event News
    • Podcast
  • When autocomplete results are available use up and down arrows to review and enter to go to the desired page. Touch device users, explore by touch or with swipe gestures.
You are here: Home / Videos / Intel Analytics Zoo Technical Overview and Case Studies

Intel Analytics Zoo Technical Overview and Case Studies



AI Field Day 1


This video is part of the appearance, “Intel Presents Analytics Zoo at AI Field Day 1“. It was recorded as part of AI Field Day 1 at 14:00-16:00 on November 19, 2020.


Watch on YouTube
Watch on Vimeo

Jason Dai, Senior Principal Engineer, gives a deeper technical overview of Intel’s Analytics Zoo, an open source software platform for big data AI. Analytics Zoo uses distributed TensorFlow/PyTorch on Apache Spark, and Dai discusses how it is used in network quality prediction by SK Telecom. Next he focuses on RayOnSpark to run Ray programs directly on the big data platform, giving the example of Burger King’s fast food recommendation engine which leverages an end-to-end training pipeline with RayOnSpark. Turning to the ML workflow question, Dai discusses how a scalable AutoML allows time series prediction, using the example of Tencent Cloud’s TI-One ML platform. Finally, Dai presents the Zouwu open source time series framework on Analytics Zoo.

Personnel: Jason Dai

  • Bluesky
  • LinkedIn
  • Mastodon
  • RSS
  • Twitter
  • YouTube

Event Calendar

  • Nov 11-Nov 12 — Tech Field Day at KubeCon North America 2025
  • Jan 28-Jan 29 — AI Infrastructure Field Day 4
  • Mar 11-Mar 12 — Cloud Field Day 25
  • Apr 8-Apr 9 — Networking Field Day 40
  • Apr 15-Apr 16 — AI AppDev Field Day 3
  • Apr 29-Apr 30 — Security Field Day 15
  • May 6-May 8 — Mobility Field Day 14
  • May 13-May 14 — AI Field Day 8

Latest Coverage

  • Storage Vendors Are Finally Speaking Data Governance and Management and I Like It
  • FortiCNAP and the New Frontier of AI Security: Lessons from Cloud Field Day 24
  • NFD39 Was Great! An Overview
  • The Cloud Comes Home: Oxide Reimagines On-Prem Computing
  • Fortinet’s Fabric-Based Approach to Cloud Security

Tech Field Day News

  • Tech Field Day Returns to KubeCon North America Live from Atlanta!
  • Exploring How AI Transforms the Enterprise Network at Networking Field Day 39

Return to top of page

Copyright © 2025 · Genesis Framework · WordPress · Log in