Tech Field Day

The Independent IT Influencer Event

  • Home »
    • The Futurum Group
    • FAQ
    • Staff
  • Sponsors »
    • Sponsor List »
      • 2025 Sponsors
      • 2024 Sponsors
      • 2023 Sponsors
      • 2022 Sponsors
    • Sponsor Tech Field Day
    • Best of Tech Field Day
    • Results and Metrics
    • Preparing Your Presentation »
      • Complete Presentation Guide
      • A Classic Tech Field Day Agenda
      • Field Day Room Setup
      • Presenting to Engineers
  • Delegates »
    • Delegate List »
      • 2025 Delegates
      • 2024 Delegates
      • 2023 Delegates
      • 2022 Delegates
      • 2021 Delegates
      • 2020 Delegates
      • 2019 Delegates
      • 2018 Delegates
    • Become a Field Day Delegate
    • What Delegates Should Know
  • Events »
    • All Events »
      • Upcoming
      • Past
    • Field Day
    • Field Day Extra
    • Field Day Exclusive
    • Field Day Experience
    • Field Day Live
    • Field Day Showcase
  • Topics »
    • Tech Field Day
    • Cloud Field Day
    • Mobility Field Day
    • Networking Field Day
    • Security Field Day
    • Storage Field Day
  • News »
    • Coverage
    • Event News
    • Podcast
  • When autocomplete results are available use up and down arrows to review and enter to go to the desired page. Touch device users, explore by touch or with swipe gestures.
You are here: Home / Videos / MLCommons and MLPerf – An Introduction

MLCommons and MLPerf – An Introduction



AI Field Day 6


This video is part of the appearance, “ML Commons Presents at AI Field Day 6“. It was recorded as part of AI Field Day 6 at 8:00-9:00 on January 29, 2025.


Watch on YouTube
Watch on Vimeo

MLCommons is a non-profit industry consortium dedicated to improving AI for everyone by focusing on accuracy, safety, speed, and power efficiency. The organization boasts over 125 members across six continents and leverages community participation to achieve its goals. A key project is MLPerf, an open industry standard benchmark suite for measuring the performance and efficiency of AI systems, providing a common framework for comparison and progress tracking. This transparency fosters collaboration among researchers, vendors, and customers, driving innovation and preventing inflated claims.

The presentation highlights the crucial relationship between big data, big models, and big compute in achieving AI breakthroughs. A key chart illustrates how AI model performance significantly improves with increased data, but eventually plateaus. This necessitates larger models and more powerful computing resources, leading to an insatiable demand for compute power. MLPerf benchmarks help navigate this landscape by providing a standardized method of measuring performance across various factors including hardware, algorithms, software optimization, and scale, ensuring that improvements are verifiable and reproducible.

MLPerf offers a range of benchmarks covering diverse AI applications, including training, inference (data center, edge, mobile, tiny, and automotive), storage, and client systems. The benchmarks are designed to be representative of real-world use cases and are regularly updated to reflect technological advancements and evolving industry practices. While acknowledging the limitations of any benchmark, the presenter emphasizes MLPerf’s commitment to transparency and accountability through open-source results, peer review, and audits, ensuring that reported results are not merely flukes but can be validated and replicated. This approach promotes a collaborative, data-driven approach to developing more efficient and impactful AI solutions.

Personnel: David Kanter


  • Bluesky
  • LinkedIn
  • Mastodon
  • RSS
  • Twitter
  • YouTube

Event Calendar

  • May 28-May 29 — Security Field Day 13
  • Jun 4-Jun 5 — Cloud Field Day 23
  • Jun 10-Jun 11 — Tech Field Day Extra at Cisco Live US 2025
  • Jul 9-Jul 10 — Networking Field Day 38
  • Jul 16-Jul 17 — Edge Field Day 4
  • Jul 23-Jul 24 — AppDev Field Day 3
  • Sep 10-Sep 11 — AI Infrastructure Field Day 3
  • Oct 29-Oct 30 — AI Field Day 7

Latest Links

  • Meraki Campus Gateway: Cloud-Managed Overlay for Complex Networks
  • Exploring the Future of Cybersecurity at Security Field Day 13
  • 5G Neutral Host: Solving Enterprise Cellular Coverage Gaps
  • Qlik Connect 2025: Answers For Agentic AI
  • Scaling Wi-Fi with Arista Networks EVPN using VESPA and MRO

Return to top of page

Copyright © 2025 · Genesis Framework · WordPress · Log in

▲