Tech Field Day

The Independent IT Influencer Event

  • Home
    • The Futurum Group
    • FAQ
    • Staff
  • Sponsors
    • Sponsor List
      • 2025 Sponsors
      • 2024 Sponsors
      • 2023 Sponsors
      • 2022 Sponsors
    • Sponsor Tech Field Day
    • Best of Tech Field Day
    • Results and Metrics
    • Preparing Your Presentation
      • Complete Presentation Guide
      • A Classic Tech Field Day Agenda
      • Field Day Room Setup
      • Presenting to Engineers
  • Delegates
    • Delegate List
      • 2025 Delegates
      • 2024 Delegates
      • 2023 Delegates
      • 2022 Delegates
      • 2021 Delegates
      • 2020 Delegates
      • 2019 Delegates
      • 2018 Delegates
    • Become a Field Day Delegate
    • What Delegates Should Know
  • Events
    • All Events
      • Upcoming
      • Past
    • Field Day
    • Field Day Extra
    • Field Day Exclusive
    • Field Day Experience
    • Field Day Live
    • Field Day Showcase
  • Topics
    • Tech Field Day
    • Cloud Field Day
    • Mobility Field Day
    • Networking Field Day
    • Security Field Day
    • Storage Field Day
  • News
    • Coverage
    • Event News
    • Podcast
  • When autocomplete results are available use up and down arrows to review and enter to go to the desired page. Touch device users, explore by touch or with swipe gestures.
You are here: Home / Videos / MLCommons MLPerf Storage

MLCommons MLPerf Storage



AI Field Day 6


This video is part of the appearance, “ML Commons Presents at AI Field Day 6“. It was recorded as part of AI Field Day 6 at 8:00-9:00 on January 29, 2025.


Watch on YouTube
Watch on Vimeo

MLCommons’ MLPerf Storage benchmark addresses the rapidly growing need for high-performance storage in AI training. Driven by the exponential increase in data volume and the even faster growth in data access demands, the benchmark aims to provide a standardized way to compare storage systems’ capabilities for AI workloads. This benefits purchasers seeking informed decisions, researchers developing better storage technologies, and vendors optimizing their products for AI’s unique data access patterns, which are characterized by random reads and massive data volume exceeding the capacity of most on-node storage solutions.

The benchmark currently supports three training workloads (UNET 3D, ResNet-50, and CosmoFlow) using PyTorch and TensorFlow, each imposing distinct demands on storage systems. Future versions will incorporate additional workloads, including a RAG (Retrieval Augmented Generation) pipeline with a vector database, reflecting the evolving needs of large language model training and inference. A key aspect is the focus on maintaining high accelerator utilization (aiming for 95%), making the storage system’s speed crucial for avoiding costly GPU idle time. The benchmark offers both “closed” (apples-to-apples comparisons) and “open” (allowing for vendor-specific optimizations) categories to foster innovation.

MLPerf Storage has seen significant adoption since its initial release, with a substantial increase in the number of submissions and participating organizations. This reflects the growing importance of AI in the market and the need for a standardized benchmark for evaluating storage solutions designed for these unique demands. The benchmark’s community-driven nature and transparency are enabling more informed purchasing decisions, moving beyond arbitrary vendor claims and providing a more objective way to assess the performance of storage systems in the critical context of modern AI applications.

Personnel: Curtis Anderson, David Kanter


  • Bluesky
  • LinkedIn
  • Mastodon
  • RSS
  • Twitter
  • YouTube

Event Calendar

  • Aug 19-Aug 19 — Tech Field Day Extra at SHARE Cleveland 2025
  • Sep 10-Sep 11 — AI Infrastructure Field Day 3
  • Sep 24-Sep 25 — Security Field Day 14
  • Oct 22-Oct 23 — Cloud Field Day 24
  • Oct 29-Oct 30 — AI Field Day 7
  • Nov 5-Nov 6 — Networking Field Day 39
  • Nov 11-Nov 12 — Tech Field Day at KubeCon North America 2025

Latest Coverage

  • A Deep Dive into Root Cause Analysis with Aviz Network Copilot
  • Hedgehog Simplifies On-Premises AI Network Configuration
  • The Silent Guardian: How Service Assurance Transforms the End-User Experience
  • Chargeback for Network Infrastructure: VCF 9.0 Shows a Way
  • Look Before You Leap into VCF 9.0

Tech Field Day News

  • A Look at Mainframe Innovation at Tech Field Day Extra at SHARE Cleveland 25
  • Experience the Energy of Networking Field Day!

Return to top of page

Copyright © 2025 · Genesis Framework · WordPress · Log in