|
This video is part of the appearance, “Hammerspace presents at AI Infrastructure Field Day 3“. It was recorded as part of AI Infrastructure Field Day 3 at 10:30-12:30 on September 10, 2025.
Watch on YouTube
Watch on Vimeo
The Open Flash Platform (OFP) Initiative is a multi-member industry collaboration founded in July 2025. The initiative’s goal is to redefine flash storage architecture, particularly for high-performance AI and data-centric workloads, by replacing traditional storage servers with an open approach that yields a more efficient and modular, standards-based, and disaggregated model.
The presentation highlights the growing challenges of data storage, power consumption, and cooling in modern data centers, especially with the increasing volume of data generated at the edge. The core idea behind the OFP initiative is to leverage recent advancements in large-capacity flash (QLC), powerful DPUs (Data Processing Units), and Linux kernel enhancements to create a highly dense, low-power storage platform. This platform aims to replace traditional CPU-based storage servers with a modular design, ultimately allowing for exabyte-scale deployments within a single rack.
The proposed architecture consists of sleds containing DPUs, networking, and NVMe storage, fitting into trays that can be modularly deployed. This approach offers significant improvements in density and power efficiency compared to existing solutions. While the initial concept uses U.2 drives, the long-term goal is to leverage an extended E.2 standard for even greater capacity. Hammerspace is leading the initiative, fostering collaboration among industry players, including DPU and SSD partners, and exploring adoption by organizations like the Open Compute Project (OCP).
Hammerspace envisions a future where AI infrastructure relies on open standards and efficient hardware. The OFP initiative aligns with this vision by providing a non-proprietary, high-capacity storage platform optimized for AI workloads. The goal is to allow for modernizing storage systems without having to buy additional storage systems, utilizing the flash that’s already available. This would offer a modern AI environment.
Personnel: Kurt Kuckein